
ownCloud Security and
Encryption 2.0;
A Technical Overview

ownCloud GmbH
Leipziger Platz 21
90491 Nürnberg
Germany

phone: +49 911 14888690
www.owncloud.com/de/kontakt

ownCloud Security and Encryption 2.0
A Technical Overview
As the use of file sharing increases across the industry, more attention is being paid to the inherent
security of these solutions and the need for corporations to provide enterprise file sync and share (EFSS)
solutions that meet IT’s security parameters. The Enterprise Strategy Group (ESG) has been tracking online
file sharing and Shadow IT and in a survey of IT professionals, found that sixty percent of the organizations
surveyed either knew (32%) or suspected (28%) that unauthorized consumer file sharing services were
being used by employees.

According to Terri McClure, senior analyst at
ESG, even more concerning was the fact that
when asked if employees were storing regu-
lated data in unauthorized consumer
accounts, 68% of those surveyed replied
likely or very likely.

An enterprise-grade file sync and share
solution that meets the strict IT security
policies set in place will help protect the
companies’ most important resource – its
data. This paper will review how to achieve
enterprise-grade security with ownCloud
Enterprise Edition.

Security Features
The ownCloud security features are desig-
ned to protect data in transit, while
ownCloud’s encryption protects data at rest.
First we will look at some of ownCloud’s
more technical security features.

One of ownCloud’s drivers for continued
security improvement is to not only fix indi-
vidual symptoms (e.g. the single bugs), but
to also focus on identifying and resolving
the root cause to prevent whole categories
of vulnerabilities. ownCloud internal secu-
rity processes and secure software develop-
ment lifecycle aligns with industry stan-
dards such as ISOs 29147, 30111 and 27304.

•	Strict Content Security Policy
Content Security Policy (CSP) is one of the
most useful and powerful web security
features introduced in recent years. With
CSP, applications can instruct the browser
to follow a specified security model,
including instructions to not execute any
inline scripts or load remote resources.
ownCloud employs a very strict policy
boiling down to the following:

–– that if there is no policy to forbid the
action,

–– execute only scripts served from the
same domain,

–– execute only style sheets served from
the same domain or embedded within
the content,

–– load only images and fonts served from
the same domain,

–– limit AJAX requests to the same domain
and

–– additional less security sensitive
but best-practice strict defaults for
other components. For further details
please take a look at the actual
implementation.

�� Most security professionals agree that
Cross-Site Scripting (XSS) is one of the
most common web application vulnerabi-
lities, and these have been exploited by
cyber-criminals for more than a dozen
years. Organizations such as Trustwave’s
Spiderlabs estimates that “82% of web
applications are vulnerable to XSS”, and
both WhiteHat Security and Trustwave
reported that in 2014, XSS was the most
prevalent vulnerability. For this reason,
ownCloud has implemented a strict
Content Security Policy. The implementa-
tion of this policy mitigates one of the
most dangerous application issues, and
ownCloud's default policy generally
ensures that even if an attacker finds a
potential XSS vulnerability, these are
often not exploitable in a real-life
scenario.

In fact, ownCloud was one of the first adop-
ters of this technology, initiating its invest-
ment in Content-Security-Policy back in
2013. Over the past few years ownCloud has
further hardened the default policy.

•	Data in Session is Stored Encrypted
PHP stores session related data within
sessions. These are usually small files on
the server containing data such as the
login state or the username. We have
hardened the PHP session storage in such
a way that the ownCloud server can only
read session data at the same time the
user is using ownCloud.

This is done by encrypting the stored
session data with an encryption key
stored in another cookie. If the user
requests a page on ownCloud the
encryption cookie will be sent by the sync
clients or the web browser. Only with this
cookie (which is not stored on the disk of
the application server) can the session
content be decrypted.

This is especially relevant, for example, if
a user uses external storage and selects
“Use login credentials”. In this mode,
ownCloud intercepts the password used
at login and stores it in the PHP session to
access other remote storages such as an
internal SharePoint instance. However,
the actual plaintext password will not be
stored on the disk.

While this is not a panacea, in order for
someone to gain unauthorized access,
that person would need to have administ-
rator privileges and perform multiple
malicious modifications to the ownCloud
core server code. What is key is that these
can be tracked and detected leveraging
customer’s existing intrusion detection
systems. Furthermore, it helps prevent
compliance violations such as acciden-
tally storing the data on a backup tape.

http://www.w3.org/TR/CSP2/
https://github.com/owncloud/core/blob/stable8.1/lib/public/appframework/http/contentsecuritypolicy.php
https://github.com/owncloud/core/blob/stable8.1/lib/public/appframework/http/contentsecuritypolicy.php

•	Secure by Default Model
New ownCloud code uses the so called
“ownCloud App Framework”, a modern
MVC-like framework to develop code for
ownCloud. Code relying on this framework
uses a lot of secure defaults such as
requiring CSRF (another specific kind of
web vulnerability caused by the original
design of the web) and authentication
checks being opt-out rather than the more
common (and less safe) opt-in. The default
mode for every critical security feature in
ownCloud is “on”, and requires the
developer to deliberately “opt-out”
of these security checks. These secure
defaults are part of ownCloud’s secure
software development lifecycle. Secure
defaults make it more difficult to acciden-
tally trigger a security vulnerability Instead,
it allows internal and external security
professionals to easily assess the overall
security of an ownCloud component.

•	Strict Comparison in PHP Technically
Enforced
PHP has some peculiarities such as “Type
Juggling”. This means that it will
automatically try to convert data types
when applicable such as in comparisons.
An example would be the following
comparison: ”0 == false” where PHP
will try to convert both values (integer and
Boolean value) into a comparable state
and thus, will return true.

This can lead to unexpected behavior and
potential security bugs if developers don’t
take this into consideration. ownCloud
forces PHP to confirm that the data is
exactly the same type by verifying the
data type using strict comparisons as a
best practice. These enforcements are
applied using an automated code scanner
as well ownCloud’s strict coding guide
lines.

•	Continual Code Hardening
In every release, ownCloud works to
improve our API and introduce new
hardening features to make the applica-
tion more secure. Recent improvements
include:

–– “data/.htaccess” is updated after each
update. Since ownCloud 8.1, the
existing .htaccess file in the data
directory is updated after each release
for enhanced security. Administrators

are advised against performing any
custom modifications to these files and,
for an even more secure experience,
encouraged to move the data folder
outside of the web root.

–– Trusted domains are a hard requirement.
A trusted domain is a domain that the
ownCloud server accepts as Host
header. So if you host “demo.owncloud.
org”, the trusted domain will be “demo.
owncloud.org” and users can't access it
using another domain such as “evil.
com” which could eventually lead to
ownCloud generating URLs using the
evil.com domain. To protect users, it is
impossible to omit the “trusted_
domain” settings.

–– Request ID supports mod_unique_id.
Each request to an ownCloud instance
is assigned an associated request ID
which is used for logging purposes.
ownCloud supports “mod_unique_id”
which means that the request ID will not
be generated by the ownCloud server,
but by the web server instead. This
allows administrators to better correlate
log information within the ownCloud
logs making it easier to track any
potential security incident.

–– Security-related headers can be sent by
the web server. When operating a web
application it is often desirable to have
some basic HTTP security headers (such
as nosniffing instructions) enabled to
prevent security pitfalls. For optimal
security, administrators are encouraged
to configure the web server to serve
these HTTP headers. While this is not
mandatory-- as ownCloud can also
apply some basic headers--this is

recommended for enhanced security.

–– Enhancement of root certificate
handling. To avoid problems with proper
HTTPS requests with PHP and misconfi-
gured hosts missing proper certificate
chains, ownCloud ships a root certifi-
cate bundle with ownCloud itself. This
bundle contains the certificates shipped
by Mozilla Firefox and is regularly sync’d
with the upstream certificates.

–– The internal file view class “OC\Files\
View” prevents directory traversals.
ownCloud strives to have a “security by
default” and “defense-in-depth” model
in our code base. To support these, the
ownCloud filesystem is built to prevent
directory traversals by forbidding
potentially dangerous character
sequences such as “../” or “..\”.

�� These are just a few examples of some
security optimizations ownCloud has
implemented, and we are always working on
adding further improvements.

��

•	File Firewall
Using the internal File Firewall of
ownCloud's Enterprise Edition, enterpri-
ses can limit access to sensitive data
even further. File Firewall is an applica-
tion-level firewall that inspects all
incoming ownCloud requests and
evaluates them based on rules set by the
administrator to only allow through
“approved” requests for a finely granular
level of control. Administrators can, for
example, limit administrative logins to a
pre-defined internal network to enhance
security or allow access to shared folders
only from a specific location to implement
internal security guidelines.

3

Administrators can limit requests based
on:

–– Request IP Range
–– Upload Size
–– Subnet
–– Request Type
–– Request URL
–– Request Time
–– User Agent
–– User Device
–– User Group

Security Efforts
ownCloud employs a variety of best practi-
ces to continually review and improve the
quality and security of the ownCloud code.

•	Internal Security Professionals

ownCloud employs security professionals
to oversee the continued security of the
ownCloud code base.

•	Internal Code Reviews
ownCloud performs internal code reviews
as well as a consideration of a threat
model for every new feature, functionality
and code change to ensure that no new
security vulnerabilities are created. A
dedicated QA team tests each new release
against the supported environments as
outlined in the Minimum System Require-
ments.

•	Change Requirements
All code changes for the server compo-
nent require two reviewers to review
and approve changes before they are
permitted into the code base. This is
designed to make it difficult to introduce
security problems either by accident or
intention.

•	Automated Code Scans
In addition to having two separate
developers review each piece of code,
ownCloud also utilizes automated code
scanners to review the code and identify
every potential insecure code function.

•	External Penetration and Security Audits
External penetration and security audits
are performed by external sources with
each new release, providing another layer
of security review for the ownCloud code
base.

•	Utilization of CVE identifiers
The Common Vulnerabilities and
Exposures (CVE) system provides a
reference method for identifying and
making known information security
vulnerabilities and exposures. Following
industry best practices, ownCloud has
issued security advisories for each
vulnerability identified, including very
minor issues. ownCloud feels that these
advisories contain information about the
security of an application. ownCloud
categorizes vulnerabilities as:

–– Critical – Vulnerabilities which may
allow an adversary to gain complete
control over the server or any files on it.
This includes Remote Code Executions
or SQL Injections.

–– Medium – Vulnerabilities allowing the
adversary to gain complete control over
a single user session. This includes
Cross-Site-Scripting vulnerabilities.

–– Low – Vulnerabilities that can only be
exploited in very rare cases or have
marginal impact.

Striving for transparency and improved
security, ownCloud’s policy is to err on the
side of releasing advisories, while focusing
on continuing to fix the root causes. Below
is a look at the number of vulnerability
reports we have received since 2012. Note
that a single advisory might have fixed mul-
tiple vulnerabilities. Also, a significant num-
ber of the vulnerabilities are located within
the ownCloud Community apps and not the
ownCloud Server itself. This means that
Enterprise Edition users and anyone not
using those apps are not affected by those
vulnerabilities.

What does this mean? Security bugs have
decreased over time and ownCloud is wor-
king to continue this trend.

•	Security Bug Bounty Program.
Consistent with other industry leaders,
ownCloud implemented a Security Bug
Bounty program. Partnering with Hacke-
rOne, ownCloud reached out to the
Security Researcher community and
personally invited the top 600 HackerOne
users to provide an additional layer of
review of ownCloud code. A reward has
been offered to these skilled professio-
nals for the validated security vulnerabili-
ties they uncover. Below is a summary of
the vulnerabilities identified to date via
the Bug Bounty program. The ownCloud
Bug Bounty Program is meanwhile running
publicly and accessible to everyone at
hackerone.com/owncloud

It should be noted that most of the resolved
issues do not affect components related to
the ownCloud Server or ownCloud Enter-
prise Edition and therefore don’t affect the
security of the ownCloud file sync and share

9,6%

17%

34,9%

38,4%Resolved

Informative

Duplicate

Not applicable

Types of Bugs Closed

September 2015

September 2015

4

https://owncloud.com/minimum-product-requirements/
https://owncloud.com/minimum-product-requirements/
https://hackerone.com/owncloud

solution. For complete transparency, a key
value of ownCloud GmbH, all reports are
published after a grace period on
https://hackerone.com/owncloud

ownCloud Server-side
Encryption
ownCloud has split the encryption app into
two components to add additional modula-
rity and flexibility into the overall encryption
architecture. Customers are no longer bound
by the out-of-the-box encryption module,
and are able to implement precisely what
they need for their environment, regulatory
requirements, and business processes. With
these enhancements, ownCloud has impro-
ved the server-side encryption to make it
more customizable than ever before.

ownCloud gives customers the two things
they want – the ability to manage their
encryption keys in their own key stores,
and the ability to customize the encryption
behavior to meet their needs.

•	Server-side Encryption Threat Model.
The main usecase of the default encryp-
tion module is to protect data stored on
remote storage or against a storage
administrator checking the content of the
files. A malicious ownCloud administrator
however will be able to gain access to
users’ files as he can modify ownCloud in
such a way to intercept the user’s
password. See also:
https://owncloud.org/blog/how-
owncloud-uses-encryption-to-protect-
your-data/

While many considerations are put in
place to ensure the security of data, the
default encryption module does not:

–– Hide the directory structure or folder
names. A storage admin will be able to
see the entire directory structure.

–– Encrypt files outside of the “files”,
“files_versions” and “files_trashbin”
folder. For example, this excludes
previews or the index of the Lucene full
text search app from encryption.

However, as Encryption 2.0 is highly flexi-
ble, you can integrate with existing security
components such as a Hardware Security
Module (HSM) to also protect key material
from a malicious administrator. Also, you
can completely adjust the way files are
stored or change the encryption algorithms
to comply with your internal security
guidelines.

ownCloud’s Server-side encryption applica-
tion is designed to perform the following
functions:

•	The core component of ownCloud's
server-side encryption allows administra-
tors to ensure that files are stored
encrypted at rest. ownCloud's encryption
capabilities rely on "encryption modules".
These define the whole encryption logic.
They can be written by implementing the
"\OCP\Encryption\IEncryption-
Module" interface.

–– This enables an ownCloud administrator
to implement a custom encryption logic

which is totally different from the
default one shipped with ownCloud.
This is useful when regulatory or
internal requirements force the usage of
specified or defined crypto components.
It also can be valuable when trying to
access existing encrypted data
storages.

–– Enterprises implementing their own
custom encryption module can decide
what data they want to encrypt (or not)
as well as implement custom key
managements to suit their needs.
Furthermore, they can easily re-use
existing parts of the default encryption
module and adjust the parts they want
to change (such as storing the keys in a
different place).

–– The default encryption module shipped
with ownCloud is called "Default
encryption module" (with an internal ID
of "OC_DEFAULT_MODULE").

Below we will cover this module's functiona-
lity in more detail.

The following keys are generated by the
default encryption module, and the usage of
each of the keys is described below:

–– Each user has a key-pair which consists
of a private and a public key. The RSA
key will be created the first time the
user login using “openssl_pkey_
new” with 4096 bits. They keys are
stored in data/$username/files_
encryption/OC_DEFAULT_MODULE
as $username.publicKey and
$username.privateKey

Generate
User Key-pair
Generate a 4096-bit
strong public/private
key-pair (*A) for each
user. Private key
encrypted with user‘s
login password using
AES-256 (*B)

Generate
File-key
Generate a 32 byte,
base 64 encoded ASCII
key for each file (*B)

Access file
Decrypt File-key with user‘s
private key and matching
Share-key, then decrypt the
file using the File-key (*A)

 (*A) Encryption 2.0 enables customer to leverage an enterprise key store or separate path for key storage
 (*B) Encryption 2.0 allows customers to implement a different algorithm and encryption flow

Generate
Share-key(s)

Encrypt File-key using the
public key of each user
who has access to the file
 (*A)

Encrypt file

Encrypt file with File-key
using AES-256 (*B)

Document Document

5

https://hackerone.com/owncloud
https://owncloud.org/blog/how-
owncloud-uses-encryption-to-protect-your-data/
https://owncloud.org/blog/how-
owncloud-uses-encryption-to-protect-your-data/
https://owncloud.org/blog/how-
owncloud-uses-encryption-to-protect-your-data/

–– The encryption module creates two
system key-pairs, one for public link
shares and one for the recovery features

–– Each file will have a 256 bit cryptogra-
phically secure random file key stored at
data/$username/files_encryp-
tion/keys/files/filename/OC_
DEFAULT_MODULE/fileKey

–– Each file will have a automatically
created share key for each user with
access to the file, share keys are stored
at data/$username/files_encryp-
tion/keys/files/$filename/OC_
DEFAULT_MODULE/username.
shareKey

•	In order to secure the user’s private key,
the key is encrypted and stored on the
disk using the default encryption method
explained below, as the password to
encrypt the key is a derived form of the
login password used. The login password
is run through a PBKDF2 key derivation
with 100,000 iterations, an instance-
specific salt and 32 (AES-256) or 16
(AES-128) byte key size depending on the
configured key size.

•	After login, the private key is decrypted
and stored within the user’s PHP session.
As explained above, ownCloud encrypts
all session content with AES-128 using an
additional cookie sent by the user for
each request so the private key is not
stored in plaintext on the disk.

•	Users sometimes forget their passwords.
ownCloud allows administrators to
optionally enable a recovery key feature

that can be used to restore data access in
the case of a lost password. The recovery
key feature is enabled centrally, after
which each user can choose whether to
enable it for their ownCloud account.

•	To enable public link sharing the
encryption module uses a special key-pair
for which the private key is encrypted with
an empty password in order to allow
anonymous access to files shared
publicly.

•	When a new file is added or sync’d,
ownCloud generates an associated
file-key and uses it to encrypt the file,
ensuring that every file known to
ownCloud has a unique file-key.

–– The default encryption module creates a
256 bit cryptographically secure random
file key for each single file. This file key
is then encrypted to each public key for
all users with access to the file, using
openssl_seal in RC4 mode and a 128 bit
long random secret key. The encryption
module knows this secret key as “share
key”.

•	An HMAC is calculated for each chunk of
the encrypted file, the HMAC key is
generated by hashing together the private
file encryption key, the file version as well
as the location of the chunk appended by
an "a". When reading files the integrity is
verified, if the file has been tampered with
a warning will be logged and shown to the
end-user.

•	When an authorized user asks to access a
file, the encryption module decrypts the
file-key with a combination of the user’s

private key and the appropriate share-key,
which then uses the file-key to decrypt the
physical data file.

–– The specific files are then en- and
decrypted via openssl_decrypt or
openssl_encrypt using the specified
cipher in config.php (either AES-128-CFB
or AES-256-CFB (default)), and a 96 bit
random IV (generated using openssl_
random_pseudo_bytes).

•	When a file is subsequently shared with a
new user, the file-key is again encrypted
with the new user’s public key to create a
new share-key. Although this abstraction
requires ownCloud to re-encrypt the
file-key, it eliminates the much more
expensive task of re-encrypting the entire
physical file when the file is shared with
new users. The same benefit is achieved
when revoking a user’s access to one or
more files.

•	ownCloud’s default encryption module
stores the following data encrypted on the
disk:

–– Files regularly created via the web
interface or WebDAV

–– Versions of files
–– Files stored in the Trashbin
–– Private encryption keys

Conventional
Encryption
Implementations

ownCloud‘s Encyption 2.0

Key Management and
Encryption Algorithm
locked together

Key Management and Encryption Algorithm unlocked for flexibility to enable
enterprise key store integration and different algorithms. Also supports multiple
encryption apps for compatibility and flexibility.

Document
Document

Document

Key
Management

Key Management

Algorithm

Header

Algorithm

ownCloud

Encryption App 1

Encryption App 1 Encryption App 2 Encryption App N

ownCloud‘s
Core APIs

Encryption
Type

Files

6

Advantages of
ownCloud’s Encryption
Model
•	It is highly secure – it has been implemen-

ted using proven, broadly adopted
technologies like OpenSSL and standards
such as AES-256 that are endorsed by
organizations such as NIST.

•	It is optimized to perform well even when
an organization has many users and very
large files.

•	Files can be stored securely on any
ownCloud-accessible storage, in any
supported format, and they can be stored
externally without exposing file content to
3rd parties.

•	Unlike cloud-only FSS vendors, ownCloud
administrators maintain complete control
over their encryption keys.

Encryption is customizable to match the
internal requirements of an organization
such as custom key managers or using
another encryption approach.

Summary

ownCloud’s data encryption model com-
bines proven server-side encryption for data
at rest with an architecture that can be easily
extended to support other advanced security
requirements. Based on a proven, broadly
adopted foundation, ownCloud offers data
protection across a variety of storage formats
without putting data at risk. Importantly,
ownCloud’s encryption model is highly scala-
ble and allows administrators to maintain
complete control over their encryption keys.

The combination of ownCloud’s security
features, security efforts including the
ownCloud Security Bug Bounty program,
and server-side encryption provide an enter-
prise-grade file sync and share solution that
is protected, fast, scalable and flexible.
ownCloud offers peace of mind to organiza-
tions that need to securely meet a broad
range of file sharing objectives.

For more information also check out the
"Optimizing ownCloud Security" whitepaper
at https://owncloud.com/whitepapers W

hi
te

pa
pe

r o
w

nC
lo

ud
 S

ec
ur

ity
 a

nd
 E

nc
ry

pt
io

n
2.

0
EN

G
16

09
05

ownCloud GmbH
Leipziger Platz 21
90491 Nürnberg
Germany

www.owncloud.com/contact
phone: +49 911 14888690

www.owncloud.com

@ownCloud
facebook.com/owncloud
gplus.is/owncloud
linkedin.com/company/owncloud

Copyright 2016 ownCloud. All Rights Reserved.
ownCloud and the ownCloud Logo are registe-
red trademarks of ownCloud in the United
States and/or other countries.

7

https://owncloud.com/whitepapers

Glossary

AES

CFB

Cipher

Client–side
encryption

Content Security
Policy (CSP)

Cookies

Cross-Site
Scripting (XSS)

CVE

EFSS

Encode

Encryption

Encryption Key

HMAC

Is a military grade encryption block cipher with a block size of 128 bits and with a key length of either 128 or
256 bits.

AJAX short for Asynchronous JavaScript and XML, is a set of web development techniques utilizing many web
technologies used on the client-side to create asynchronous Web applications.

Ciphertext feedback (CFB) is a mode of operation for a block cipher (in this case AES). In contrast to the
cipher block chaining (CBC) mode, which encrypts a set number of bits of plaintext at a time, it is at times
desirable to encrypt and transfer some plaintext values instantly one at a time, for which ciphertext feedback
is a method.

an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as
a procedure in cryptography.

In client-side encryption, the end-user is responsible for maintaining their keys, accessed with a
password, which keeps control over their data in their hands. This can limit the risk of outside access to
their information. An advantage of this approach over the server-side option is that an administrator or
service provider cannot be compelled, against the users’ wishes, to produce the keys and the data for law
enforcement requests.

is an added layer of security that helps to detect and mitigate certain types of attacks, including Cross-Site
Scripting (XSS) and data injection attacks. These attacks are used for everything from data theft to site
defacement or distribution of malware.

a small piece of data sent from a website and stored in the user's web browser while the user is browsing it.
Every time the user loads the website, the browser sends the cookie back to the server. Cookies are usually
used to authenticate the user against web services.

Cross-site Request Forgery, also known as a one-click attack or session riding and abbreviated as CSRF or
XSRF, is a type of malicious exploit of a website whereby unauthorized commands are transmitted from a user
that the website trusts. Unlike cross-site scripting (XSS), which exploits the trust a user has for a particular
site, CSRF exploits the trust that a site has in a user's browser.

Common Vulnerabilities and Exposures system provides a reference-method for publicly known information-
security vulnerabilities and exposures. CVE is maintained by MITRE and many standard enterprise security
monitoring products do keep track of those and inform the administrator in case an unpatched
application has been found.

Enterprise File Sync and Share - a service that allows users to save files in cloud or on-premises storage and
then access them on other desktop and mobile computing devices.

The purpose of encoding is to transform data so that it can be properly (and safely) consumed by a different
type of system, e.g. binary data being sent over email, or viewing special characters on a web page. The goal
is not to keep information secret, but rather to ensure that it’s able to be properly consumed.

the process of transforming messages or information in such a way that only authorized parties can read it

Key that ownCloud uses to de- and encrypt files.

a keyed-hash message authentication code (HMAC) is a specific construction for calculating a message
authentication code (MAC) involving a cryptographic hash function in combination with a secret
cryptographic key. HMAC is used by ownCloud to guarantee the integrity of the encrypted payload.

8

http://searchsecurity.techtarget.com/definition/block-cipher
http://searchsecurity.techtarget.com/definition/cipher-block-chaining
http://searchsecurity.techtarget.com/definition/plaintext

HTTP Security
Headers

MVC

NIST

PHP

Private
encryption key

HTTP headers are additional meta information transferred between browser and server. Some headers do
serve security purposes and are enabled automatically by ownCloud.

The Model-View-Controller architectural pattern separates an application into three main components:
the model, the view, and the controller.

National Institute of Stands and Technology, the federal technology agency that works with industry to
develop and apply technology, measurements, and standards.

The programming language that ownCloud server is written in.

a private or secret key is an encryption/decryption key known only to the party or parties that exchange
secret messages. In traditional secret key cryptography, a key would be shared by the communicators so that
each could encrypt and decrypt messages. ownCloud uses public-key cryptography so that that keys are not
shared between users.

Public
encryption key

Recovery key

Server-side
encryption

SharePoint

Type Juggling

WebDAV

XSS

a value provided by a designated authority as an encryption key that, combined with a private key, can be
used to effectively encrypt messages and digital signatures.

A private encryption key to which all files are encrypted as well, the administrator has the ability to recover
data using this key.

the cloud storage provider manages the encryption keys along with your data. Many of the most well-known
cloud storage providers use this configuration. Server-side encryption limits the complexity of the environ-
ment, while still maintaining the isolation of your data. With ownCloud being an on-premise solution the
keys never leave your own server.

a web application platform in the Microsoft Office server suite. SharePoint combines various functions which
are traditionally separate applications: intranet, extranet, content management, document management,
personal cloud, enterprise social networking, enterprise search, business intelligence, workflow
management, web content management, and an enterprise application store.

the name given by the PHP developers to the "feature" in PHP that allows a programmer to compare values of
different data types without explicitly converting them. (such as comparing the string “1” to the integer 1)

Web Distributed Authoring and Versioning is an extension of the Hypertext Transfer Protocol (HTTP) that
allows clients to perform remote Web content authoring operations. The WebDAV protocol provides a
framework for users to create, change and move documents on a server, typically a web server or web share.
The most important features of the WebDAV protocol include the maintenance of properties about an author
or modification date, namespace management, collections, and overwrite protection.

Cross-Site Scripting – a type of computer security vulnerability found in many web applications. XSS enables
attackers to inject client-side script into web pages viewed by other users. A cross-site scripting vulnerability
may be used by attackers to bypass access controls such as the same-origin policy. Using a XSS attack an
attacker may gain the same privileges as the logged-in user.

9

