
Performance and scaling of ownCloud Enterprise

ownCloud
Architectural Guide

2

ARCHITECTURAL GUIDE

22

―― ownCloud is the open platform for more productivity and security in digital collaboration and
­provides a common file access layer regardless of where the data lives – in applications, object ­stores,
on-premise storage or in the cloud. Data is kept where it is while IT can manage proprietary information and
business risk; leveraging existing data management, security and governance tools and processes. Whether
in SharePoint, on a Windows network drive or in cloud storage, users have a single interface from which
they can access, sync and share files on any device, anytime, from anywhere –
all ­completely ­managed, secured and controlled by IT.

This paper describes the performance and scaling of the industry-standard EFSS (Enterprise File Sync Share)
solution ownCloud Enterprise. ownCloud Enterprise runs on an Enterprise LAMP (Linux Apache MySQL PHP)
stack on either Ubuntu, Debian, Red Hat, CentOS, SUSE operating systems running PHP ­connecting to one
of the supported databases, MySQL, PostgreSQL, MariaDB or Oracle DB.

Intended Audience

This paper is intended for System Architects and
Administrators who are deploying ownCloud Enterprise
into their IT infrastructure. It is assumed that the reader
has a basic understanding of IT infrastructure, basic
networking and routing skills, along with virtualization
and server installation best practices. It is also assu-
med that the reader has a basic understanding of the
principles of ownCloud and its capabilities and has had
at least limited hands-on experience with ownCloud
Enterprise’s user-interface as well as administrator
interface.

Solution Architecture Overview

The core of the ownCloud solution is the ownCloud
server. Unlike consumer-grade file-sharing services,
ownCloud‘s Enterprise solution enables IT to protect
and manage files within the ownCloud environment –
from file storage to user / group provisioning.
ownCloud monitors and logs all data access events
for downstream auditing and analysis using popular
tools like Splunk®.

The server provides a secure web interface through
which administrators control all of ownCloud‘s resour-
ces, allowing authorized users to enable and disable
features, set policies, create shares and manage users.
Advanced features for enterprise directory integration
and file-firewalls give admins exceptional flexibility
and control. The server also manages and secures
API access to ownCloud, while providing the internal
processing engine needed to deliver high-performance
file-sharing services. In addition to that, ownCloud also
provides an automated way to attach tags to files accor-
ding to a set of rules. These tags can also be used within
the file firewall to control the access and sharing of files.

To enable a broad range of storage alternatives,
ownCloud also abstracts the storage tier. As a result,
ownCloud can leverage just about any storage protocol
that can be mounted on your ownCloud server at the
operating system level as Primary Storage. ownCloud
also has native connectors for object stores here, allo-
wing us to directly access objects stores like S3. Other
storage resources can also be mounted on the system
using ownCloud Enterprise’s internal connectors, other-
wise known as Secondary Storage.

With over 50 million community and enterprise
users, ownCloud is the preferred file access solution
for organizations across the globe.

ARCHITECTURAL GUIDE

3

Primary Storage

Primary Storage is required in all ownCloud installa-
tions. By default, ownCloud utilizes the ../ownCloud/
data directory of the root of the webserver on the local
partition as the default user data directory. It‘s presence
is required by the ownCloud core application to store
user-specific metadata such as thumbnails, temporary
files, cache, encryption keys, versioning and trash-bin.
While the ownCloud data directory can reside on the
local partition of the underlying server, administrators
can elect to utilize other means of Primary Storage atta-
ched / mounted to the local Linux operating system.

ownCloud can utilize any files system that the local
operating system can mount, such as SMB, NFS, GFS,
etc , and has native connectors for object stores. Once
an administrator elects to utilize a storage mechanism
other than the local partition, the ownCloud configura-
tion file simply needs to be pointed to the new storage
location. While ownCloud can seamlessly work with the
Primary Storage on the local partition, administrators
will want to utilize an external Primary Storage source
mounted to the Linux operating system to ease in
storage overlap, performance, backups / snapshots and
expandability concerns. Use of object stores as primary
storage is done through a specific ownCloud plugin.
For larger installs of ownCloud where multiple instan-
ces of the ownCloud Enterprise application servers
are running behind a load balancer, external Primary
Storage is a requirement as it allows access to the user
storage from multiple application servers that reside in
the web-farm or cluster.

Secondary Storage

Secondary Storage is optional, but particularly robust
component of ownCloud Enterprise that will allow orga-
nizations to utilize their existing data infrastructure. This
not only facilitates flexibility in design, but it also allows
administrators to utilize existing data silos and ACL
(Access Control Lists), minimizing the need for redun-
dant storage devices, as ownCloud Enterprise supports
Amazon S3, Dropbox, Google Drive, FTP, SFTP, SMB /
CIFS, SharePoint, Windows server shares and WebDAV.

The diversity of the various compatible Secondary
Storage along with the Primary Storage aspect of
ownCloud Enterprise gives businesses an easily custo-
mizable solution that can integrate data from a number
of sources. Think of ownCloud Enterprise as a switch or
router for your current existing data silos, allowing se-
amless integration and presenting the end-user with an
intuitive yet simple interface to multiple data sources.
For example, administrators may want to utilize existing
Windows Server network shares of a department alrea-
dy in place, minimizing data redundancy and preserving
ACLs. In this case, ownCloud Enterprise, through the use
of the Windows Network Drive (WND), could connect to
an existing Windows Share \\servername\engineering
and allow users to securely access data while at work,
home or on the road and collaborate with internal
colleagues or remotely with contractors.

As with all Secondary Storage within ownCloud,
such connections, once configured, are stored in the
ownCloud Enterprise database. This helps facilitate
horizontal scaling by avoiding numerous configuration
steps as well any changes or additions to Secondary
Storage is effective immediately and available across an
ownCloud Enterprise cluster.

Primary
Local Partition, S3,
NFS, GFS, GFS2, XFS,
Red Hat Storage,
ZFS GPFS, etc.

Secondary
CIFS, WebDAV, FTP, SFTP,
DropBox, Windows Share,
Google, ownCloud, etc.

Typical ownCloud architecture
Primary Storage

Secondary
Storage

Secondary Storage architecture with ownCloud

4

ARCHITECTURAL GUIDE

44

Horizontal versus Vertical sizing

Vertical scaling is accomplished by increasing system
resources, like adding more memory and processing
power. Horizontal scaling, on the other hand, is accom-
plished by adding more servers to an existing cluster.

Let’s talk about exactly what that means. Given the
nature of ownCloud and PHP’s out-of-the-box single
threaded application design, ownCloud (as with most
web-based PHP applications) performs / scales best in
a clustered, or scaled-out environment. For this discus-
sion, a cluster is simply a group of ownCloud servers.
A load balancer distributes the workload between the
ownCloud Enterprise servers in a cluster. At any point,
an ownCloud Enterprise App server can be added to
the existing cluster to handle more requests from users
accessing your ownCloud Enterprise instance; this is
horizontal scaling. This can be accomplished through
the stateless operation of the ownCloud code.

While horizontal scaling is usually the most reliable
and efficient method of scalability, it‘s not as trivial as
vertical scaling. ownCloud Enterprise stores most of
the configuration data in the database, so scaling out
horizontally is extremely easy. Administrators normally
install and successfully configure a single ownCloud
virtual-server instance. Once that virtual-server is con-
firmed and tested, it is cloned using tools provided the
underlying hypervisor, powered back up on the existing
host or a separate host depending customer environ-
ment (a separate host provides minimal redundancy).
Once the new virtual-server is running, a new IP address
is given and the load balancer is configured with it.

The load balancer has a single responsibility: deciding
which ownCloud Enterprise server from the cluster will
receive a request from an end-user. It behaves like a
reverse proxy, making the process seamless to the end-
user. Least connections and round-robin are the two
most common type of load balancer algorithms used
in an ownCloud Enterprise solution. A load balancer
with least connections combined with sticky sessions
affords one of the simplest and most common types
of load balancing in an ownCloud Enterprise solution.
With least connections / sticky sessions the load balan-
cer directs an initial end-user to the server with the least
current connections and continues to send the user to
the same server simplifying session management.

There are standard and enterprise-grade appliances
from companies such as F5, A10, Kemp, etc. that are
very fast and reliable and can also be set up in an N+1
environment, ensuring even higher availability. If a bu-
siness is utilizing such enterprise-grade load-balancers
they can and should be utilized in front of an ownCloud
cluster, reducing deployment costs, setup, maintenance
and complications. Open Source HAProxy is also a very
popular and affordable option. Open Source HAProxy
sits on top of a standard Linux based OS virtual-machi-
ne and can be easily configured, deployed and installed
in an ownCloud Enterprise cluster. For High Availabi-
lity solutions, HAProxy can be configured in an N+1
environment utilizing a heartbeat mechanism between
two physically diverse HAProxys, ensuring uptime.

Horizontal Scaling with ownCloud

ARCHITECTURAL GUIDE

5

User Session Management and
Persistence in an ownCloud
Enterprise Cluster

ownCloud Enterprise traffic is based on user sessions
and leverages PHP to store user session variables.
Therefore when implementing an ownCloud Enterprise
cluster behind a load balancer, session management
and persistence must be taken into consideration. The-
re are two fundamentally different ways to do session
management in supporting an ownCloud cluster. One
is local session management on the application servers
combined with utilizing sticky / persistent sessions on
the load balancer. The other is a centralized session
management tool on the ownCloud Enterprise appli-
cation virtual-servers. Business drivers will determine
which session management solution is best, based on
needs and after careful consideration of the pros and
cons of each. For most business needs, local session
management on the ownCloud Enterprise virtual-ma-
chine with the load balancer utilizing sticky / persistent
sessions will suffice. If business needs dictate other-
wise, Memcached or Redis solutions are fully supported
by ownCloud and accommodate session management
across multiple App servers in the cluster.

Distributed Session Management

ownCloud Enterprise, by design, does not store user session in the database. If ownCloud ­Enterprise has
used the database, then session management across a cluster would not be an issue as the database
would be a common storage point. Careful consideration was put into the design of user session storage
within ownCloud. In order to enable ownCloud to scale beyond one half million users, ownCloud chose to
­implement in RAM session storage for speed and performance.

6

ARCHITECTURAL GUIDE

66

PHP and memory caching

Some operations that an ownCloud Enterprise server
executes take more time to complete, such as expensive
calculations or communication with a remote storage
server. Other operations are much faster – but are
needed many times per second. To improve performan-
ce and reduce the load on the system caused by CPU
/ RAM intensive or frequently needed work, ownCloud
Enterprise can cache the result of these operations.
Caching is used in PHP to store compiled versions of the
scripts so they don’t need to be recompiled on every re-
quest. This is called Opcaching and has been included
and enabled by default in PHP since the 5.5 release.

Memory caching, on the other hand, is used directly
by web applications like ownCloud. It helps ownCloud
avoid slow database queries or file system checks by
retrieving a result from a memory cache, either on the
local machine with APCu or distributed on a cluster of
servers using Redis. The result is a trade-off of memory
usage for improved performance. As the memory usage
of these caches is typically small, it is generally worth
the effort to set them up.

Transactional File Locking

ownClouds Transactional File Locking mechanism locks
files to avoid file corruption during normal operations.
Since this mechanism operates at a higher level than
the filesystem it’s not mandatory to use a filesystem
that supports locking. This functionality is for examp-
le used to lock parent directories so that they can’t
be renamed during any activity on files inside these
directories.

File Locking is enabled by default, using the data-
base locking backend. Admins of ownCloud Servers
with a heavy workload should install a Memcache to
reduce the load on the database. To use a memcache
with Transactional File Locking a Redis Server with a
corresponding PHP module is needed.

All details can be found at docs.owncloud.com

ARCHITECTURAL GUIDE

7

Server Architecture

At its core, ownCloud Enterprise is a PHP web applica-
tion running on top of Apache web servers, running on
the customer‘s choice of supported Linux platforms.
There is no advantage or disadvantage to running
ownCloud on any of the supported Linux operating
systems even if some distros may not provide the requi-
red and recommended PHP modules. For that reason,
Ubuntu is one of the recommended distributions. In the
case of selecting an OS for use with ownCloud, busines-
ses will utilize what company policy dictates or leverage
existing in-house knowledge to select the base OS. The
ownCloud Enterprise PHP application manages every
aspect of ownCloud Enterprise, from user management
to plugins, file sharing and storage. Attached to the PHP
application is a database where ownCloud Enterprise
stores user information, user-shared file details, plug-in
application states, and the ownCloud file cache.

ownCloud accesses the database through an abstrac-
tion layer, enabling support for Oracle, MySQL, and
PostgreSQL. Complete webserver logging is provided
via Web-server logs, and user and system logs are
provided in a separate ownCloud Enterprise log, or can
be directed to the Syslog file. Deploying, scaling, and
maintaining ownCloud Enterprise is similar in fashion
to any other LAMP-based web application and follows
basic rules, practices and design principles commonly
found in the industry.

Server Sizing

As with any HTTP-based LAMP deployment, ownCloud’s
deployment scenarios are similar in configuration and
resources. With ownCloud, the number of users (both
total and concurrent), number of files attached / acces-
sible to the ownCloud instance, available bandwidth,
storage IOPs and CPU speed are all considerations
when sizing your environment for production status.

Due to the many variables that are possible for each
business and their solution, there is no right “one size
fits all” deployment specification. Administrators will
need to monitor, test, and possibly stress-test their
particular deployment before a full production roll-out
based on their utilization needs and hardware involved.
We will explore a few example of deployments to give a
better understanding of how ownCloud is deployed and
right-sized, giving administrators a base guideline to
designing the ownCloud Enterprise solution that best
fits their business needs.

8

ARCHITECTURAL GUIDE

88

Implementation Examples

Company A

Company A is a 200-person company at one location
with about 170 users identified as needing access to
ownCloud Enterprise. Business need dictates that only
Primary Storage is required and estimates about 11,000
files totaling 90GB need to be stored on the Primary
Storage of ownCloud Enterprise. Company A has only
one IT Administrator, on staff who has slight experience
with Ubuntu and MySQL, thus Ubuntu is selected as
the underlying operating system and Jane will utilize
MySQL as the database provider.

Company A currently is using virtualized technology
based on VMware’ ESXi hypervisor which resides on
relatively current physical hosts of reasonable speed
(RAM / CPU / Disk).

To deploy ownCloud Enterprise, Company A will create
two virtual machines in their environment. One “APP”
virtual-server with 2 vCPUs (2 vCPUs per host core) 8GB
RAM and 150GB of disk space (30GB for the operating
system and 120GB for user data, allowing for growth)
and one “SQL” virtual-server, with 2 vCPUs, 8GB RAM
and 20GB of disk space. On both virtual servers, they
will install the latest stable version of a headless Ubuntu
operating system.

On the App virtual machine, Apache, and PHP along
with any required dependencies will be installed utili-
zing normal practices for installing applications on a
Linux server. Then the ownCloud Enterprise application
is installed. Likewise, MySQL will be installed on the
SQL virtual-server and configured following ownCloud
Enterprise’s instructions. Jane configures PHP to consu-
me a maximum of 512MB and selects APCu as her PHP
caching device and allocates 256MB to it.

Seeing that Company A requires public-facing access
to their ownCloud environment, the App virtual-server
will be provided with a public IP address (either by
use of NAT at the firewall / router or assigned directly

to the virtual-server) and set DNS entries respectively
for the FQDN (Fully Qualified Domain Name) assigned.
Company A’s firewall will be configured to allow the App
server to be in the DMZ and will open TCP port 443 and
optional also port 80 access to the App server. As with
any ownCloud installation, the SQL virtual-server does
not need public IP access, so Jane assigns a private
IP address (i.e. 10.10.64.128) and ensures that the App
virtual-server can correctly communicate with the SQL
virtual-server over TCP / UDP port MySQL (3306).

Company A installs the company‘s SSL certificates
within Apache and confirms they are correctly installed,
accessing the server with her web-browser. They also
configure Apache to redirect all requests to the webser-
ver on HTTP (port 80) to HTTPS (port 443) for the best
experience for the end-users. After that, they can point
a web-browser to the URL of their insntance in order to
complete the initial configuration.

Installing headless servers (i.e. minimal OS install
without a GUI desktop) should be practiced with
any web based application server. This not only
minimizes hardware provision requirements
(CPU, RAM and disk), but also reduces complexities
and insecurities as well as ensuring uptime.

Architecture Example for Company A

Role vCPU RAM PHP PHP-
Cache

OS /
App

/data

App 2 8GB 512MB 256MB 30GB 120GB

SQL 2 8GB 20GB

ARCHITECTURAL GUIDE

9

All client interfacing (Browser, Desktop Sync
­Client, Mobile Apps and WebDAV) to the ownCloud
application is accomplished over HTTPS. No other
ports need to be exposed to the internet. While
access to the ownCloud server can be accomplished
over HTTP (port 80), given today’s CPU speed
combined with security concerns, this is not
recommended. Administrators should forward
HTTP (port 80) to HTTPS (port 443) either at the
firewall / router level or utilize Apache to forward
port 80 for the best user experience. ownCloud utilizes two forms of user authentication:

external (LDAP, Active Directory,SAML 2.0 or
­OpenID Connect) and internal (stored in ­database).
Both external and internal authentication can
exist ­simultaneously. For example, a business
can integrate ownCloud with Active Directory to
­allow authentication for their current ­employees’
­access, and at the same time can utilize ownCloud
­Enterprise’s internal user ­authentication
­mechanism for outside contractors’ access.
Contractors that do not have an AD account but
­require access to files located on the ownCloud
server shares. ownCloud Clients like the mobile
Apps (iOS/Android) and the Desktop Client can be
authenticated using basic auth with username/­
password or OAuth2.

Company A uses Microsoft Active Directory (AD) for user
authentication. Once configured, administrators will
select individual AD users or by AD groups, allowing
access to the ownCloud application. Once correctly
configured, Jane confirms the correct setup by success-
fully logging into the ownCloud web application utilizing
her existing AD credentials.

Company A has a third-party onsite backup solution.
Jane will install the subsequent Linux agent provided
by the third-party vendor onto both the App and SQL
virtual-machines and configure them to back up both
the user /data directory and MySQL database. She
will also make snapshots (as a form of backup) of the
virtual-machines, as per IT policy, utilizing vSphere.

Once Jane ensures the ownCloud installation is opera-
ting correctly and secure, she deploys to a small subset
of “power-users” within Company A, for initial testing
and feedback. Once initial testing is complete and feed-
back is satisfactory, she deploys the ownCloud Desktop
Sync Client, ownCloud Mobile application as required.
After training users on the use of ownCloud, she will
monitor the server and environment as she would with
any other web application.

LDAP Configuration in ownCloud

10

ARCHITECTURAL GUIDE

1010

While ownCloud will utilize this user /data directory
for metadata such as thumbnails, versioning, and
trash-bin, it is recommended that the ownCloud
quota feature be implemented and set at 25MB per
user. With a quota specified, ownCloud will ensure
that the user directory will comply with the induced
quota by maintaining the individual users trash-bin
and versioning directories (oldest out).

While the two App virtual-servers can be installed
on separate physical hosts this does not provide a
true HA (High Availability) solution given that the
SQL and Load Balancer are singular. Tools such as
VMware HA and DRS can be called upon to reduce
outage times. If a true, more hardened, HA solution
is required, please see the next sample solution.

Sizing Examples for Company B

Company B

Company B is a 450-person Engineering company
with approximately 400 users currently approved
to have access to the ownCloud Enterprise environ-
ment. Company B is growing rapidly so they want to
implement without creating any bottlenecks with their
growth. Company B has three different locations, uti-
lizing a hub and spoke IT design with good bandwidth
between each.

Company B has existing Windows Server shares to
integrate into the ownCloud Enterprise environment
and is not looking to utilize ownCloud Enterprise’s
Primary Storage extensively. Throughout the Windows
Server shares across multiple servers, there are 110,000
files consuming 1.2TB of storage. Company B has an
administrator who is familiar with CentOS and MySQL.
To deploy ownCloud Enterprise, Company B administ-
rators will initially create three virtual-machines in their
environment.

Two “APP” virtual-servers with 4 vCPUs (4 vCPUs per
host core) 16GB RAM and 30GB of disk space, one “SQL”
virtual-server, with 4 vCPUs, 16GB RAM and 40GB of disk
space and one “LB” (load Balancer) with 1 vCPU, 8GB
RAM and 15GB disk space. They will install the latest
stable version of a headless CentOS operating system
on all of their virtual servers. The SAN administrator will
create a 10GB NFS partition on the company‘s SAN, allo-
wing the Linux administrator to mount the NFS to each
ownCloud Enterprise App server utilizing the FStab
mounting scheme. This NFS mount will accommodate
ownCloud Enterprise’s /data directory. Even though
Company B will use Windows Server shares utilizing
ownCloud Enterprise’s WND app for their data storage,
the /data directory is still required for proper operation.
In this case, 25MB per user (plus overhead) was used to
calculate the size of the NFS mount.

Company B has no current load balancer in place so
HAProxy was chosen for speed, performance and
budgeting concerns and will be installed on the appro-
priate virtual machine. Once installed, HAProxy will be
configured to point to the IP addresses assigned to the
two ownCloud Enterprise App virtual-servers utilizing
the Least Connection format (with Round Robin being
an option) and Sticky Sessions enabled.

Installation of the application server will consist of
installing Apache, PHP, APCu for PHP caching and
ownCloud Enterprise. Once this virtual-server is fully
configured (ownCloud setting, PHP settings, Apache
configuration and SSL certificates etc.), tested and
proven, it will be cloned using tools provided within
the underlying hypervisor, IP address re-configured
accordingly and powered up into the cluster. MySQL
is installed and configured accordingly on the SQL
virtual-machine. Redis should be configured on a
dedicated server and used for distributed caching and
Transactional File Locking.

Role vCPU RAM PHP PHP-
Cache

OS /
App

/data

LB 1 8GB 15GB

App (2) 4 16GB 512MB 512MB 30GB 10GB

SQL 4 16GB 40GB

ARCHITECTURAL GUIDE

11

HA, or High Availability solutions refer to solutions with
automated fail-over and recovery, while FT or Fault
Tolerant ones ensure zero downtime. Company B has
opted to utilize existing Windows server shares due to
the extensive ACLs in place along with the desire not to
have data reside in two places (data overlap). ownCloud
Enterprise administrators will configure the Windows
Network Drive app of ownCloud Enterprise to point
to each specific existing Windows share. Company B
has decided to share not only the users‘ existing home
directory, but specific department shares as well.

Since Company B has also integrated ownCloud
Enterprise into their existing Microsoft AD, Company B
can also leverage ownCloud Enterprise’s ability to use
the users‘ login credentials. Using the login credentials
allows ownCloud to honor existing Windows ACLs.
ownCloud Enterprise end-users will see only what their
AD login credentials allow.

Once the initial install is completed, tested, verified and
the company mandated testing is completed, the IT
manager will deploy to a small test group compromi-
sing of IT staff and other power-users. During this test
period, systems will be monitored and gauged for effec-
tiveness. Once the IT staff is satisfied with the results,
they will deploy the desktop sync clients, mobile apps
and train the employees in groups of 100 with three
day lapse in between the next group of 100. During
each segmented deployment, IT staff is monitoring the
ownCloud Enterprise systems and making any minor
changes if required.

Architecture Example for Company B

Accessing Windows Network Drives with ownCloud

Initial deployment in an ownCloud Enterprise
solution is normally when you see the most load
or stress, due to the number of new users and new
sync requests. In this case, the IT Manager decided
to segment the deployment to relieve any stresses
that might have slowed the systems and provided
new ownCloud Enterprise users with the best
possible experience with the new solution.
The other option that the IT Manager had at
his disposal was to increase the number of App
servers to handle the initial deployment of all
400 users at once. Once the initial deployment is
completed, ­monitoring the systems would ensure
administrators the timely removal of the additional
servers deployed during initial deployment.

12

ARCHITECTURAL GUIDE

1212

Architecture Example for Company C

Company C

Company C is a growing financial institution with appro-
ximately 1100 employees, of which 800 employees are
required to have access to the ownCloud Enterprise
solution. Due to the nature and time constraints of
the financial transactions, they need a Fault Tolerant
(FT) solution. Business drivers dictate the need for a
99.999% uptime (“5 nines”) solution for the ownCloud
Enterprise environment. They have a single data center
/ hub with multiple locations / spokes throughout all
four time zones in the continental US. Within this data
center, they utilize two hypervisor vCenters for re-
dundancy and Company C plans to leverage these for
ownCloud Enterprise redundancy.

Due to the number of possible concurrent users utilizing
the ownCloud service, Company C plans to utilize two
ownCloud Enterprise web application virtual-servers
for each vCenter (four ownCloud Enterprise App
servers total due to redundancy). They have no current
Windows shares that would be useful for their end-users

so they elect to use ownCloud Enterprise’s Primary
Storage as the default storage.

Company C already has a substantial investment in an
existing highly redundant SAN, so they will create an
NFS mount point for the ownCloud /data directory. After
speaking to management and considering all business
drivers, they have elected to allocate 5GB of disk space
for each ownCloud user and the SAN-admin creates a
4.7TB NFS mount point on their company‘s SAN.

Sizing Examples for Company C

Role vCPU RAM PHP PHP-
Cache

OS /
App

/data

LB (2) 1 8GB 15GB

App (4) 4 16GB 1GB 1GB 30GB 4.7TB

SQL (2) 4 16GB 40GB

ARCHITECTURAL GUIDE

13

Company C has standardized on Red Hat as their
primary Linux operating system and due to in-house ex-
pertise, selected PostgreSQL as the database software.

Initially, they will create 3 virtual machines; one each for
the Load Balancer, APP and MySQL. The Linux Adminis-
trator will install HAProxy on the Load Balancer virtu-
al-machine, ownCloud Enterprise on the App server
and MySQL on the SQL virtual-machine. The Linux Ad-
ministrator will also mount the NFS created by the SAN
administrator and modify ownCloud to point to the new
/data directory. Company C has also elected to install
Redis on the App virtual-machine for file-locking and
Redis for both file locking and Redis with 1GB of RAM for
improved PHP caching performance. Once Company C
has all three virtual-machines (load balancer, App and
SQL) in place, it will begin its testing.

Once satisfied with the performance, it will „clone“
the single Aplication-Server instance and bring up a
second Aplication-Server, configure both and update
the Load Balancer accordingly. Again testing takes
place. Once fully tested, IT administrators will replicate
the solution (Load Balancer, two Application-Servers ,
and SQL virtual-machines) onto a separate vCenter for
redundancy. A heartbeat will be setup between the two
load balancers, with one set to active and the other to
passive. A Master / Slave Relationship will be establis-
hed between the two PostgreSQL virtual-machines.

Master / Master and Master / Slave relationships of
the SQL servers both allow to be configured for a
transparent failover. In case of an Master / ­Master
setup it́ s mandatory to configure a SQL Proxy
like ProxySQL, Maxscale or F5-Splitter to avoid
deathlocks.

14

ARCHITECTURAL GUIDE

1414

Company D

Big Corporate Conglomerate (BCC) is a large 15,000
employee company with many diverse business units
(i.e. Retail, government contracting, banking, etc.).
From a business standpoint, these divisions operate
independently with minimal need to communicate
with other divisions, and some modest requirement to
communicate with their corporate headquarters.

After a careful review off the business needs within BCC
and developing a solution for an Enterprise File Sync
and Share, they have settled on utilizing ownCloud
Enterprise for their needs. Within BCC, the need to
collaborate between divisions is minimal. Of particular
interest was the capability of BCC not only to create
individual / separate ownCloud Enterprise solutions for
each division, but also to utilize ownCloud Enterprise’s
Federated Cloud sharing to accommodate the lesser
need of collaborating amongst divisions. Headquar-
ters also has a vital need to securely receive financial
reports, marketing documents as well as other files
securely and seamlessly from each division.

With Federated Cloud, users at one division of BCC
can collaborate with users at another division while
each divisional ownCloud Enterprise server maintains
its respective security and governance protocols and
does not require BCC to replicate unneeded data across
diverse business entities.

ownCloud Federation gives users the flexibility and
transparency to securely and easily share files between
divisions without IT administrator involvement. BCC
users are no longer confined to a single shared folder or
servers within their respective divisions.

Federated sharing with ownCloud Enterprise also gives
BCC the ability for administrators to mount common-
ly used data through the use of the External Storage
App. This, combined with the ability for end-users to
individually share files and folders with other division
users, will provide BCC the collaboration it needs across
different division silos. BCC has a corporate security
policy that requires the use of two-factor authenticati-
on for all users. BCC selected ownCloud Enterprise to
accomplish these goals. BCC will install the ownCloud
Enterprise Shibboleth app and install and configure
mod_shib along with Apache on their environment. BCC
will configure both the /etc/apache2/conf.d/shib.conf

Federated Cloud Sharing Options

Mounting Federated Cloud Shared as External Storage to ownCloud

ARCHITECTURAL GUIDE

15

and the /var/www/html/owncloud/config/config.php on
each ownCloud App virtual machine. Once configured,
BCC will test each server to ensure proper configuration
and performance.

To deploy the Federated ownCloud Enterprise solution
company-wide, BCC will treat each diverse division unit
as a separate solution as far as the ownCloud Enterprise
solution is concerned. Given the different technologies
in place for each division, BCC IT Managers will custo-
mize each solution to connect to the resources within
each division, but attempt to keep common practices
within each environment (i.e Linux OS, WWW Server,
Load balancer, SQL server, etc.) as required. BCC can
use the samples provided here as a baseline for each
divisional deployment.

Architecture Example for Company D

16

ARCHITECTURAL GUIDE

16 Copyright 2019 ownCloud. All Rights Reserved. ownCloud and the ownCloud logo are
registered trademarks of ownCloud in the United States and/or other countries.

ownCloud GmbH
Rathsbergstr. 17
90411 Nürnberg
Germany

@ownCloud
facebook.com/owncloud
linkedin.com/company/owncloud

twitter
facebook
linkedin

Contact:
owncloud.com/contact
Phone: +49 911 14888690
owncloud.com

About ownCloud

ownCloud is the market leading open source content collaboration solution worldwide. ownCloud enables users
to securely access and share data from any device, anywhere in the world. With more than 200,000 installations
and 50 million users, ownCloud provides organizations a modern collaborative experience, thereby boosting
productivity without compromising on security. At the same time, it gives organizations the visibility and control
required to manage sensitive data.

To get the latest updates, please visit https://owncloud.com/newsroom or follow us on Twitter @ownCloud.

ow
nC

lo
ud

 A
rc

hi
te

ct
ur

al
 G

ui
de

 E
N

 1
91

10
7

https://twitter.com/owncloud
https://www.facebook.com/ownClouders
https://www.linkedin.com/company/owncloud/
https://twitter.com/owncloud
https://www.facebook.com/ownClouders
https://www.linkedin.com/company/owncloud/
https://owncloud.com/contact

https://owncloud.com
https://owncloud.com/newsroom
https://twitter.com/owncloud

